PersamaanTrigonometri #MatematikaPeminatanPada video kali ini dijelaskan cara menyelesaikan persamaan trigonometri yang berbentuk persamaan kuadrat.Materi M
Dengandemikian, 1. sin x˚=a, diubah dahulu menjadi sin x˚= sin 2. cos x˚=a, diubah dahulu menjadi cos x˚= cos 3. tan x˚=a, diubah dahulu menjadi tan x˚= tan Setelah itu, persamaan-persamaan tersebut diselesaikan dengan menggunakan cara-cara persamaan trigonometri dasar. 12.
Dalammenyelesaikan persamaan ini sebagai dasar penyelesaian adalah identitas trigonometri. Contoh bentuk persamaan trigonometri bentuk kuadrat sebagai berikut. 1. 2 sin2 x + sin x = 0 2. 2 sin2 x + 3sin x + 1 = 0 3. 2 cos2 x + 7 cos x - 4 = 0 4. 12 sin2 x + cos x - 6 = 0
Nilaikonstanta c pada grafik persamaan menentukan titik potong fungsi parabola dengan sumbu y. maka akar dari persamaan kuadrat akan berbentuk imajiner/ tidak real. Contoh akar imajiner (D<0)/ Tentukan persamaan kuadrat yang memiliki akar 3 dan 1/2. Penyelesaian: x 1 =3 dan x 2 = -1/2 x 1+ x 2 =3 -1/2 =6/2
Dalamhal menyelesaikan persamaan trigonometri didalam bntuk kalimat terbuka ini, berarti sama dengan menentukan nilai variabel yang terdapat didalam persamaan tersebut sehingga persamaan itu menjadi benar. Begitu juga jika dihadapkan dengan kasus sebaliknya. Persamaan Trigonometri Yang Berbentuk Persamaan Kuadrat Dalam Sin, Cos Atau Tan :
RumusPersamaan Trigonometri Ada tiga macam rumus periode yang dipakai untuk menyelesaikan persamaan trigonometri. Semua itu dibagi kedalam 3 bentuk, yaitu: 1) sin x = sin α jadi x = α + k.360 o dan x = (180 - α)+k.360 o 2) cos x = cos α jadi x = α + k.360 o dan x = - α+k.360 o 3) tan x = tan α jadi x = α+k.180 o dimana k merupakan bilangan bulat.
0wLqR. Math SMAHomeTeacherKelas XKelas XIMatematika Wajib XIMatematika Minat XIKD. 1 Persamaan TrigonometriReview TrigonometriSudut Khusus dan KuadranGrafik TrigonometriIdentitas TrigonometriPersamaan Trigonometri sederhanaPersamaan Trigonometri dengan IdentitasnyaPersamaan Trigonometri Bentuk KuadratKD. 2 Jumlah dan perkalian TrigonometriKD3. LingkaranKD4. PolinomialKelas XIIGaleriMath SMAHomeTeacherKelas XKelas XIKelas XIIGaleriMore11 PERSAMAAN TRIGONOMETRI Bentuk Kuadrat dan updated Report abuse
Pada kesempatan kali ini saya akan berbagi bagaimana cara menyelesaikan persamaan trigonometri tanpa menggunakan rumus. yang saya maksud, adalah rumus persamaan trigonometri berikut ini Persamaan Penyelesaian $\sin{x} =\sin{a^\circ}$ $\cos{x}=\cos{a^\circ}$ $\tan{x}=\tan{a^\circ}$ $x=a^\circ+k\times360^\circ$ atau $x=180-a^\circ+k\times360^\circ$ $x=\pm a^\circ+k\times 360^\circ$ $x=a^\circ +k\times 180^\circ$ Rumus-rumus yang lumayan susah untuk diingat 😁, tapi cara yang saya bagikan ini sebenarnya tidak saya sarankan, anggap saja hanya berbagi pengalaman bagaimana cara saya menutupi kekurangan yang jujur saja lemah dalam hapalan, toh matematika bukan ilmu hapalan kan? hehe 😁 Namun tetap, ada beberapa syarat yang mesti terpenuhi untuk bisa menggunakan cara ini, Pertama, kalian harus tau nilai trigonometri sudut istimewa pada kuadran I, sebagai berikut $\alpha$ $0^\circ$ $30^\circ$ $45^\circ$ $60^\circ$ $90^\circ$ $\sin{\alpha}$ $0$ $\frac{1}{2}$ $\frac{1}{2}\sqrt{2}$ $\frac{1}{2}\sqrt{3}$ $1$ $\cos{\alpha}$ $1$ $\frac{1}{2} \sqrt{3}$ $\frac{1}{2} \sqrt{2}$ $\frac{1}{2}$ $0$ $\tan{\alpha}$ $0$ $\frac{1}{3} \sqrt{3}$ $1$ $\sqrt{3}$ $-$ Kedua, kalian harus tau nilai trigonometri bernilai positif atau negatif berada di kuadran mana saja. untuk mempermudah mengingatnya, kita ingat yang bernilai positifnya saja yang biasa saya hapal menggunakan "jembatan keledai" dalam kalimat "semanis sinta tanpa cosmetik", sebagai berikut Kuadran I Semua bernilai positif $\sin$, $\cos$, $\tan$, $\sec$, $\csc$ dan $\cot$ Kuadaran II $\sin$ dan "kebalikannya" yaitu $\csc$ bernilai positif, yang lainnya negatif Kuadran III $\tan$ dan "kebalikannya" yaitu $\cot$ bernilai positif, yang lainnya negatif Kuadran IV $\cos$ dan "kebalikannya" yaitu $\sec$ bernilai positif, yang lainnya negatif perhatikan diagram berikut Nah, itulah dua syarat yang harus terpenuhi. Baiklah sekarang kita coba bahas soal persamaan trigonometri, kita mulai dari yang paling sederhana CONTOH 1 Tentukan penyelesaian dari persamaan $\sin{x}=\frac{1}{2}$ untuk $0^\circ \leq x \leq 360^\circ$. Jawab Pertama perhatikan batasan $x$ yaitu $0^\circ \leq x \leq 360^\circ$ artinya $x$ bisa berada di kuadran I, II, III atau IV. Sekarang perhatikan persamaan $\sin{x}=\frac{1}{2}$, bisa kita lihat nilai $\sin$ positif, artinya nilai $x$ yang memenuhi pastilah berada di kuadran I atau II karena $\sin$ positif di kuadran I dan II maka nilai $x$ yang memenuhi pastilah $x=30^\circ$ atau $x=150^\circ$ CONTOH 2 Tentukan penyelesaian dari persamaan $\cos{x}+1=0$ untuk $0^\circ \leq x \leq 360^\circ$. Jawab $\cos{x}+\frac{1}{2}\sqrt{2}=0\Rightarrow\cos{x}=-\frac{1}{2}\sqrt{2}$ Pertama perhatikan batasan $x$ yaitu $0^\circ \leq x \leq 360^\circ$ artinya $x$ bisa berada di kuadran I, II, III atau IV. Perhatikan persamaan $\cos{x}=-\frac{1}{2}\sqrt{2}$ nilai $\cos$ negatif, artinya nilai $x$ yang memenuhi berada di kuadran III dan IV. Maka nilai $x$ yang memenuhi adalah $x=180^\circ-45^\circ=135^\circ$ atau $x=180^\circ+45^\circ=225^\circ$ CONTOH 3 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Penyelesaian persamaan $\cos{x}=-\frac{1}{2}\sqrt{3}$ untuk $0^\circ\leq x \leq 360^\circ$ adalah .... A. $x=30^\circ, 150^\circ$ B. $x=120^\circ, 210^\circ$ C. $x=150^\circ, 210^\circ$ D. $x=150^\circ, 300^\circ$ E. $x=150^\circ, 330^\circ$ Jawab Nilai $\cos$ negatif, artinya nilai $x$ yang memenuhi berada di kuadaran II dan III, maka nilai $x$ yang memenuhi adalah $x=180^\circ-30^\circ=150^\circ$ dan $x=180^\circ+30^\circ=210^\circ$.Jawaban C CONTOH 4 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Diketahui $x_1$ dan $x_2$ merupakan penyelesaian persamaan $\sqrt{2}+2\cos{x}=0$ untuk $0^\circ\leq x \leq 360^\circ$. nilai $x_1+x_2=$ .... A. $210^\circ$ B. $270^\circ$ C. $300^\circ$ D. $330^\circ$ E. $360^\circ$ Jawab $\begin{align*}\sqrt{2}+2\cos{x}&=0\\2\cos{x}&=-\sqrt{2}\\ \cos{x}&=-\frac{1}{2}\sqrt{2}\end{align*}$ Nilai $\cos$ negatif, artinya nilai $x$ yang memenuhi berada pada kuadran II dan III, maka $x_1=180^\circ-45^\circ=135^\circ$ $x_2=180^\circ+45^\circ=225^\circ$, sehingga $x_1+x_2=135^\circ+225^\circ=360^\circ$Jawaban E CONTOH 5 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Penyelesaian persamaan $\tan{x+15^\circ}=-1$ untuk $180^\circ \leq x \leq 360^\circ$ adalah .... A. $x=135^\circ$ B. $x=225^\circ$ C. $x=300^\circ$ D. $x=315^\circ$ E. $x=330^\circ$ Jawab Batasan $x$, $180^\circ \leq x \leq 360^\circ$ bisa kita ubah menjadi $180^\circ+15^\circ \leq x+15^\circ \leq 360^\circ+15^\circ$ $\Rightarrow 195^\circ\leq x+15^\circ\leq 375^\circ$ Jika kita misalkan $x+15^\circ=p$, maka $\tan{p}=-1$ dengan $195^\circ\leq p \leq 375^\circ$ $\tan$ bernilai negatif, artinya $p$ yang memenuhi berada di kuadran IV, dengan demikian, nilai $p=360^\circ-45^\circ=315^\circ$ $\begin{align*}x+15^\circ&=p\\x+15^\circ&=315^\circ\\x&=315^\circ-15^\circ\\x&=300^\circ\end{align*}$Jawaban C CONTOH 6 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Himpunan penyelesaian persamaan $2\cos{2x-60^\circ}=1$ untuk $0^\circ \leq x \leq 180^\circ$ adalah .... A. $\{ 0^\circ, 45^\circ, 135^\circ \}$ B. $\{0^\circ, 60^\circ, 135^\circ\}$ C. $\{0^\circ, 60^\circ, 180^\circ\}$ D. $\{30^\circ, 45^\circ, 180^\circ\}$ E. $\{30^\circ, 135^\circ, 180^\circ\}$ Jawab $\begin{align*}2\cos {2x-60^\circ}&=1\\ \cos{2x-60^\circ}&=\frac{1}{2}\end{align*}$ Batasan $x$ $0^\circ \leq x \leq 180^\circ \Leftrightarrow -60^\circ \leq 2x-60^\circ \leq 360^\circ$ Misal $2x-60^\circ = p$, maka $\cos{p}=\frac{1}{2}$ untuk $-60^\circ \leq p \leq 300^\circ$ karena nilai $\cos$ positif, maka $p$ yang memenuhi berada di kuadran I, dan IV. Perhatikan juga "batasan" $p$, $-60^\circ$ berada di kuadran IV, memenuhi. jadi $p=-60^\circ, 60^\circ, 300^\circ$ $2x-60^\circ=p\Leftrightarrow x=\frac{p+60^\circ}{2}$ untuk $p=-60^\circ\Rightarrow x=\frac{-60^\circ+60^\circ}{2}=0^\circ$ untuk $p=60^\circ\Rightarrow x=\frac{60^\circ+60^\circ}{2}=60^\circ$ untuk $p=300^\circ\Rightarrow x=\frac{300^\circ+60^\circ}{2}=180^\circ$Jawaban C